Category Archives: FX

Minimum Spanning Trees and G10FX implied volatilities…

I have always been keen on clustering methods as they are a practical way to visualise meaningful relationships that may exist in the somehow chaotic financial markets…..Following my previous post on the subject I decided to extend this to FX Implied volatilies…

The following charts show how major 1-month FX volatilities have been trading over the last 20-years and for 2016.

plot of chunk charts

The folowing charts shows the correlations of daily changes since 1996 and for 2016.

plot of chunk correlation

The below plot the minimum spanning tree for G10FX implied vols. The distance between the nodes being a function of the above correlations. Some groupings are quite intuitive…some other less so…I would say the recent period seems to be at odd with the period 2010-2015 where we had two specific group: one for European currencies the other for commodity currencies….

plot of chunk mst

If you want a natter about this or just to exchange some ideas on the subject or other concepts presented in my blog, contact me at Pierre@argonautae.com

Trade Weighted Currency Indices Stretch Map

Trade Weighted Currency Indices Report

Tue May 10 21:59:59 2016

The following report aims to provide a gauge to the current strenght of major currencies. For doing so I use the Bank of England Trade weighted Exchange rate indices and a standardised statistical measures of price deviation to provide an estimate of how stretched major currencies are on a trade weighted perspective.

plot of chunk linechart

I first calculate the T-stat of the mean price deviations over a rolling period of 61 days. The charts below show the results for each currency over the last 500 days. The purple line represents the median value since 1990-01-03 and the red lines represent the 95% confidence intervals. Therefore if the value is above or below those the deviation of the given currency would be deemed as atypical relative to what #would be expected under a normal distribution and therefore overbought/oversold.

plot of chunk rolling chart

The following Map chart shows how stretched the currencies are over time horizons ranging from 1-month to 1-year. The bigger the square the most significant the upside (green) or downside (red) of currencies over the given period.

plot of chunk stretch map
The charts below show how the daily changes in the Trade weighted indices have correlated since January 1990 and since the begining of 2015.

plot of chunk correlation
Finally, the following provide an ARIMA forecast for each of the trade weighted indices. My script selects the best ARIMA fit over the previous 250-day to generate a forecast for the next 21 days.
It also shows the forecast confidence intervals.

plot of chunk arimaforecastplot of chunk arimaforecastplot of chunk arimaforecast

G10 FX Risk Report Update

The following analysis uses a proprietary G10 FX implied volatility index which I created quite a few years ago. The index is a G10 FX 1-month implied volatility index which weights are derived from the BIX FX triennal surveys for the year 2001,2003 & 2007. If you want more information on the exact formulation of the index feel free to contact me pollux@argonautae.com for a chat. For the time being suffice to say that the G10 FX volatility index is a broad and accurately weighted measure of G10 FX risk.

In my approach I recognise that the nominal level of implied volatility is a crude metric of risk therefore I also use two other measures, namely Volga and the ShockIndex. The Volga is simply the volatility of the G10 FX volatility index over a given period. This measure highlights how uncertain and unstable the level of risk in G10 FX has become. Though generally positively correlated those measures of risk can diverge from time to time. You can have a high level of volga whilst G10 FX volatilities are trading at rather innocuous levels. This is not a trivial observation as the leverage undertaken by market participants tends to be an inverse function of market volatility which implies a greater vulnerability when volatility becomes uncertain at low levels and therefore cannot be accurately budgeted for. The ShockIndex is the ratio between the Volga and the G10 FX volatility index at the beginning the historical window chosen to evaluate the Volga. It quantifies sharp changes and acceleration in risk levels. Historically it has proven to be a good classifying measure for market event risks in FX markets.

The below charts shows those three measures both relative to a time axis and their historical distribution. The red lines are the 95% confidence intervals, the purple line the median. The blue line highlight the current level. The Volga and ShockIndex in this report are evaluated over a period of 14 days. The medians and 95% confidence intervals are calculated over the full history going back to 1996 though the charts shows only the recent years.

plot of chunk riskchart

At close of business the 2016-05-09 the G10 FX volatility index was estimated at 7.3 % at the 44.5 percentile. The 14-day G10 FX Volga was estimated at 4.5 % its 64 percentile and the shockindex at 0.6 or its 66.2 percentile.

The above charts are useful, however their visualisation is quite limiting. On the one hand we need quite a few charts to present the data on the other hand it is difficult to show the full G10 FX volatility Index history going back to 1996 as this would make the charts unreadable. Therefore clustering and aggregating the whole data into a single chart should be useful to the end user. To answer this I use a mapping technique developed by Kohonen in the 1980′. It uses an unsupervised neural network to re-arrange data around meaningful clusters. Though computationally complex is a practical way to summarise multidimensional data into a low (usually 2) dimensional system.

The below chart shows how the G10 FX Volatility Index history was split into 4 distinct clusters. Those clusters where computed not only as a function of the G10 FX Volatility Index level but also as a function of the other discussed variables, namely Volga and Shockindex.

Since 1996 the G10 FX volatility Index traded 59 % of the time in Cluster 1, 30 % in Cluster 2, 8 % in Cluster 3 and 3 % in Cluster 4. Overall the layering provided seems quite intuitive as the increase in risk and time spent in each cluster points toward what would generally be expected from market risk regimes ranging from low to high risk.

plot of chunk cluster_chart

In the chart below we zoom on the various regimes within which the G10 FX Volatility Index hasevolved for the current year. so far it remained 66 % of the time in Cluster 1, 26 % in Cluster 2, 8 % in Cluster 3 and 0 % in Cluster 4.

plot of chunk ytdriskchart

Finally the below chart shows a Self Organising Map of the above mentioned risk metrics. The data has been grouped and colored as a function of four clusters of increasing market risk regimes. Obviously as shown on the map, the minimum level of volatility pertains to cluster 1 and the highest to cluster4. The current regime and its progression from 21 days ago is also highlighted on the map.

plot of chunk SOM_chart

AFX Index April Update: Small up month for currency trend followers …..

Passive currency indices do not reflect any of the money management skills necessary to generate profit out of the Foreign Exchange market. Evidently there is no value in holding a long (or short) position in any currency over the very long term. For this reason passive currency benchmarks fail to adequately describe the performance of currency funds because they do not have an embedded timing process to imitate the short/long currency positions that an active manager would take. For that reason correlation between passive currency indices and currency managers peer group indices tends to be low.

The AFX, aims to replicate the risk/return profile of the average currency manager by using the returns of technical trading rules, namely trend following trading rules. The index was designed by Lequeux & Acar (1998). The timing embedded in the index relies on the buy/sell signals generated by three moving averages. So as to cover a broad spectrum of time horizons the ex-ante statistical properties of technical indicators were used to build the index on the basis of ex-ante measurable criteria of risk reduction and transaction costs. Finally the index uses a weighting scheme derived from the estimated turnover in currency market as reported by the triennial survey on foreign exchange turnover conducted by the Bank for International Settlements. The index is calculated gross of any fee or risk free income and as such express the typical directional market opportunity that was available in G10 FX.

A full description of the index can be found in : Lequeux, P. and Acar, E. (1998) “A Dynamic Benchmark for Managed currencies Funds”, European Journal of Finance Vol. 4.

The historical returns of the AFX Index can be downloaded by through the following link: AFX Historical data

plot of chunk risk_profile

**Summary Performance Statistics

##                                  AFX
## Annualized Return               3.06
## Annualized Standard Deviation   6.80
## Annualized Sharpe Ratio (Rf=0%) 0.45

Drawdowns Table

##          From     Trough         To  Depth Length To Trough Recovery
## 1  2010-11-30 2014-06-30 2015-01-30 -11.48        51     51       44
## 2  2004-01-30 2004-09-30 2008-10-31 -10.76        58     58        9
## 3  2015-04-30 2016-03-31       <NA> -10.02        14     14       12
## 4  1993-05-28 1995-01-31 1996-01-31  -7.86        33     33       21
## 5  1988-01-29 1988-04-29 1988-11-30  -7.79        11     11        4
## 6  1991-04-30 1991-08-30 1991-12-31  -7.17         9      9        5
## 7  2009-01-30 2009-04-30 2010-05-31  -6.26        17     17        4
## 8  1992-01-31 1992-04-30 1992-07-31  -5.77         7      7        4
## 9  2002-07-31 2002-11-29 2003-05-30  -5.68        11     11        5
## 10 1989-06-30 1989-10-31 1990-07-31  -5.58        14     14        5

Monthly Returns

##       Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec YEARLY
## 1984 -0.6 -0.7 -0.7  0.0  0.8  1.4  4.1 -1.7  3.9 -0.9  0.9  1.9    8.5
## 1985  1.5  4.0 -1.5 -2.3 -0.4 -0.3  6.7 -1.5 -1.5  2.1  3.3  0.0   10.1
## 1986  1.4  5.0 -1.3  2.2 -1.1  0.3  3.7  0.1 -1.3  1.0 -0.9  0.8    9.9
## 1987  3.2  0.1  2.3  1.7 -1.6 -1.9  1.7 -0.1 -0.5 -0.2  4.7  5.0   14.3
## 1988 -5.8 -0.3 -0.2 -1.6  1.3  4.2  1.8  0.7 -1.5  0.9  3.1 -2.9   -0.2
## 1989  3.1 -2.5  3.1 -0.3  5.6 -0.5 -1.6 -0.9 -1.6 -1.1  0.8  2.2    6.4
## 1990 -0.4  0.5  0.7 -0.1  0.1 -1.2  3.8  1.1 -0.2  3.3 -0.6 -1.4    5.7
## 1991 -1.8 -1.1  7.9 -1.8 -0.9  2.3 -2.7 -4.2  3.6 -1.6  1.9  5.3    7.0
## 1992 -4.5 -1.0  0.8 -1.1  0.5  3.8  1.7  3.7 -0.6 -0.7  1.7 -0.7    3.6
## 1993 -2.8  2.0  0.5  2.6 -0.1 -1.2 -0.5 -3.3  0.1  0.0 -0.2 -0.4   -3.3
## 1994 -1.5  0.3  1.4 -0.4 -0.9  2.9 -1.1 -1.5 -0.2  1.8 -1.2 -1.1   -1.5
## 1995 -0.8  1.7  6.5  0.2 -3.8 -2.0 -0.5  4.9 -1.1  0.7 -0.9 -0.1    4.7
## 1996  3.3 -1.8  0.6  2.0  0.4  0.3 -0.1 -1.0  0.8  1.8  0.2  1.4    7.9
## 1997  4.0  1.3 -0.3  1.3 -2.6  0.7  2.3 -0.9 -0.4  0.1  1.5  0.1    7.2
## 1998 -0.7 -2.1  2.6 -1.3  1.5 -0.5 -0.8 -1.9  0.9  4.7 -2.5  0.1    0.1
## 1999 -0.4  0.7  0.7  0.6  0.7 -0.5 -0.5 -0.8  0.2 -0.8  2.4 -0.5    1.8
## 2000  1.8  0.8 -0.7  1.4 -1.1 -1.7 -0.2  1.9 -0.7  2.0 -0.6  4.4    7.3
## 2001 -0.3 -1.4  2.6 -2.1  0.8 -0.5 -1.0  1.8 -0.9 -0.6 -0.5  0.3   -2.0
## 2002  1.3 -1.9 -1.3  0.3  2.6  4.7 -0.4 -1.5 -1.7 -1.6 -0.6  2.8    2.8
## 2003  1.2 -0.5 -0.5  0.1  2.9 -1.9 -1.1  0.7  0.7  0.3  0.7  3.0    5.7
## 2004 -0.5 -0.4 -1.0 -0.7 -1.0 -1.8 -1.3 -3.0 -1.5  2.0  3.3  0.3   -5.7
## 2005 -2.7 -0.4  0.0 -0.2  2.6  2.2  0.2 -1.6  0.6  0.3  1.6 -1.7    0.7
## 2006 -1.4 -0.9 -1.6  1.9  1.2 -1.1 -0.6  0.6 -0.1 -0.2  1.9 -0.5   -0.8
## 2007 -0.1 -0.9 -0.8  1.2 -0.4  0.1  0.3 -1.0  1.6  0.6  0.6 -1.3   -0.3
## 2008  0.7  0.9  2.8 -2.5 -1.5 -1.9 -0.7  4.2 -0.9  8.8  1.5  0.3   11.5
## 2009 -1.1 -0.4 -2.2 -2.8  4.5 -0.7 -0.6 -0.7  1.6 -0.8  0.8 -0.7   -3.0
## 2010  0.7  1.3  0.1 -0.3  3.1 -0.7  0.7  0.1  1.1  1.4 -0.7 -1.7    5.0
## 2011 -1.3  0.2  0.3  3.0 -3.2 -1.6 -0.2 -2.9  3.2 -4.1 -0.2  2.0   -4.8
## 2012 -0.9  0.8 -0.6 -1.2  3.3 -3.3  0.8 -1.1  1.2  0.4 -0.1  2.2    1.5
## 2013  2.1 -0.2  0.7 -1.8 -0.5 -2.6 -0.4 -1.5  1.5 -0.5  0.3  1.8   -1.2
## 2014 -2.6  0.2 -0.9 -0.9 -0.2 -0.1  0.5  1.4  3.5  0.7  2.5  1.4    5.5
## 2015  2.5 -0.3  1.9 -1.3 -1.0 -2.5 -0.7 -1.2 -0.5 -1.5  2.3 -3.4   -5.6
## 2016 -0.7  0.6 -0.6  0.6   NA   NA   NA   NA   NA   NA   NA   NA   -0.1

The AFX is positively correlated to main peer group indices highlighting that currency managers are typically directional in their investment style. The below charts shows the 24-month rolling correlation of the AFX with the BTOP FX Index .

plot of chunk rolling_correl

If you need more information or have questions about the above, feel free to contact me at pollux@argonautae.com

Trade Weighted Currency Indices Stretch Map

Trade Weighted Currency Indices Report

Tue May 03 22:46:56 2016

The following report aims to provide a gauge to the current strenght of major currencies. For doing so I use the Bank of England Trade weighted Exchange rate indices and a standardised statistical measures of price deviation to provide an estimate of how stretched major currencies are on a trade weighted perspective.

plot of chunk linechart

I first calculate the T-stat of the mean price deviations over a rolling period of 61 days. The charts below show the results for each currency over the last 500 days. The purple line represents the median value since 1990-01-03 and the red lines represent the 95% confidence intervals. Therefore if the value is above or below those the deviation of the given currency would be deemed as atypical relative to what #would be expected under a normal distribution and therefore overbought/oversold.

plot of chunk rolling chart

The following Map chart shows how stretched the currencies are over time horizons ranging from 1-month to 1-year. The bigger the square the most significant the upside (green) or downside (red) of currencies over the given period.

plot of chunk stretch map
The charts below show how the daily changes in the Trade weighted indices have correlated since January 1990 and since the begining of 2015.

plot of chunk correlation
Finally, the following provide an ARIMA forecast for each of the trade weighted indices. My script selects the best ARIMA fit over the previous 250-day to generate a forecast for the next 21 days.
It also shows the forecast confidence intervals.

plot of chunk arimaforecastplot of chunk arimaforecastplot of chunk arimaforecast

G10 FX Position Report Update

G10 FX POSITIONING REPORT

Tue May 03 22:48:09 2016

The following report aims to provide a gauge to the current market positioning in G10 FX. It focuses on US$ crosses and uses a standardised statistical measures of price deviation as well as a regression methodology to produce an estimate of how stretched currency exchange rates are and also to evaluate how currency managers are likely to be positioned and leveraged in G10 Currency. I use the BTOPFX in the report but can do the computations for any other peer group benchmark.

G10 FX STRETCH MAP

The stretch indicator looks at how much exchange rates are extended by calculating the T-stat of the mean price deviation over a rolling period of 61 days. The charts below shows the results for each currency pairs over the last 500 days. The spot prices are expressed as 1 unit of foreign currency versus the USD. The purple line represent the median value since 2005 and the red lines represent the 95% confidence intervals. Therefore if the value is above or below those the deviation of the given exchange rate would be deemed as atypical relative to what would be expected under a normal distribution and therefore overbought/oversold.

plot of chunk stretch line chart

The below shows the above calculated T-stats but this time relative to their historical distributions. Once again the red lines delimit the 95% confidence intervals and the purple line the median value. The blue line indicates the most current value of the T-stat.

plot of chunk stretch distribution

The following Map chart shows how stretched G10 FX exchange rates are over time horizons ranging from 1-month to 6-month. The bigger the square the most significant the upside (green) or downside (red) of the exchange rate over the given period. All the exchange rates are quoted on CCY-US$ basis so red indicate a depreciation of a given CCY against US$ and green an appreciation versus the US$.

plot of chunk stretch map

Estimated Currency Managers Positioning in G10 FX

To determine the sensitivity of currency managers to exchange rates and therefore their current positioning we regress the daily returns of the BTOPFX index against the daily logarithmic returns of G10 FX rates. We then calculate the T-stat for each of the regression’s slope coefficients. The higher the T-stat the higher the sensitivity to a given currency and therefore likely positioning. Using the regression weights as well as the variance of the independent and explanatory variables as input we can then easily deduce an estimation of the current risk utilisation of the typical currency manager as inferred by the values of the BTOPFX.

The below shows the T-stat of the regression’s slope coefficients over the last 500 days. The purple line represents the median value since 2005 and the red lines represent the 95% confidence intervals. Therefore if the value is above or below the red lines the positioning in a currency would be deemed as extreme and therefore the risk of unwinding would be greater since the market inventory would likely be close to its highest. Probably highlighting a good environment to enter a contrarian trade.

plot of chunk sensitivity line chart

The sensitivity of currency managers returns to changes in G10 FX rates relative to their historical distribution is shown below. Once again the red lines are the 95% confidence intervals and the purple line the median value. The blue line indicates the most current value of the T-stat. If this one is either side of the intervals of confidence it indicates a potentially overextended market positioning in the given currency.

plot of chunk sensitivity distribution

The exposure to the US$ is derived from the combined sensitivities to the other currencies and is shown in the same fashion than for the other currencies. Namely against an axis of time and relative to its historical distribution.

plot of chunk USD sensitivity

The below Map chart shows the currency managers sensitivity to G10 FX exchange rates over time horizons ranging from 1-month to 6-month. The bigger the square the most significant the sensitivity to a currency the exchange rate over the given period. Long positioning is shown in green and short in red.

plot of chunk sensitivity map

Estimated Leverage

As explained previously the level of risk utilisation of currency managers and therefore their gearing can easily be derived by using the regression coefficients and the variances of both the independent and explanatory variables. The chart below shows the rolling estimation of risk utilisation as well putting it in respect of its historical distribution. Average Risk utilisation over the last 61 days is estimated at 39.18 % of maximum.

plot of chunk leverage

Trade Weighted Currency Indices Stretch Map

Trade Weighted Currency Indices Report

Tue Apr 26 21:39:01 2016

The following report aims to provide a gauge to the current strenght of major currencies. For doing so I use the Bank of England Trade weighted Exchange rate indices and a standardised statistical measures of price deviation to provide an estimate of how stretched major currencies are on a trade weighted perspective.

plot of chunk linechart

I first calculate the T-stat of the mean price deviations over a rolling period of 61 days. The charts below show the results for each currency over the last 500 days. The purple line represents the median value since 1990-01-03 and the red lines represent the 95% confidence intervals. Therefore if the value is above or below those the deviation of the given currency would be deemed as atypical relative to what #would be expected under a normal distribution and therefore overbought/oversold.

plot of chunk rolling chart

The following Map chart shows how stretched the currencies are over time horizons ranging from 1-month to 1-year. The bigger the square the most significant the upside (green) or downside (red) of currencies over the given period.

plot of chunk stretch map
The charts below show how the daily changes in the Trade weighted indices have correlated since January 1990 and since the begining of 2015.

plot of chunk correlation
Finally, the following provide an ARIMA forecast for each of the trade weighted indices. My script selects the best ARIMA fit over the previous 250-day to generate a forecast for the next 21 days.
It also shows the forecast confidence intervals.

plot of chunk arimaforecastplot of chunk arimaforecastplot of chunk arimaforecast

Minimum Spanning Trees and G10FX implied volatilities…

I have always been keen on clustering methods as they are a practical way to visualise meaningful relationships that may exist in the somehow chaotic financial markets…..So here it is…

The following charts show how major 1-month FX volatilities have been trading over the last 5-years and for 2015.

plot of chunk charts

The folowing charts shows the correlations of daily changes since 2010 and for 2015.

plot of chunk correlation

The below plot the minimum spanning tree for G10FX implied vols. The distance between the nodes being a function of the above correlations. Some groupings are quite intuitive…some other less so…I would say the recent period seems to be at odd with the period 2010-2015 where we had two specific group: one for European currencies the other for commodity currencies….

plot of chunk mst

If you want a natter about this or just to exchange some ideas on the subject or other concepts presented in my blog, contact me at pollux@argonautae.com

Trade Weighted Currency Indices Stretch Map

Trade Weighted Currency Indices Report

Tue Apr 12 20:58:48 2016

The following report aims to provide a gauge to the current strenght of major currencies. For doing so I use the Bank of England Trade weighted Exchange rate indices and a standardised statistical measures of price deviation to provide an estimate of how stretched major currencies are on a trade weighted perspective.

plot of chunk linechart

I first calculate the T-stat of the mean price deviations over a rolling period of 61 days. The charts below show the results for each currency over the last 500 days. The purple line represents the median value since 1990-01-03 and the red lines represent the 95% confidence intervals. Therefore if the value is above or below those the deviation of the given currency would be deemed as atypical relative to what #would be expected under a normal distribution and therefore overbought/oversold.

plot of chunk rolling chart

The following Map chart shows how stretched the currencies are over time horizons ranging from 1-month to 1-year. The bigger the square the most significant the upside (green) or downside (red) of currencies over the given period.

plot of chunk stretch map
The charts below show how the daily changes in the Trade weighted indices have correlated since January 1990 and since the begining of 2015.

plot of chunk correlation
Finally, the following provide an ARIMA forecast for each of the trade weighted indices. My script selects the best ARIMA fit over the previous 250-day to generate a forecast for the next 21 days.
It also shows the forecast confidence intervals.

plot of chunk arimaforecastplot of chunk arimaforecastplot of chunk arimaforecast

Trade Weighted Currency Indices Stretch Map

Trade Weighted Currency Indices Report

Wed Apr 06 20:41:59 2016

The following report aims to provide a gauge to the current strenght of major currencies. For doing so I use the Bank of England Trade weighted Exchange rate indices and a standardised statistical measures of price deviation to provide an estimate of how stretched major currencies are on a trade weighted perspective.

plot of chunk linechart

I first calculate the T-stat of the mean price deviations over a rolling period of 61 days. The charts below show the results for each currency over the last 500 days. The purple line represents the median value since 1990-01-03 and the red lines represent the 95% confidence intervals. Therefore if the value is above or below those the deviation of the given currency would be deemed as atypical relative to what #would be expected under a normal distribution and therefore overbought/oversold.

plot of chunk rolling chart

The following Map chart shows how stretched the currencies are over time horizons ranging from 1-month to 1-year. The bigger the square the most significant the upside (green) or downside (red) of currencies over the given period.

plot of chunk stretch map
The charts below show how the daily changes in the Trade weighted indices have correlated since January 1990 and since the begining of 2015.

plot of chunk correlation
Finally, the following provide an ARIMA forecast for each of the trade weighted indices. My script selects the best ARIMA fit over the previous 250-day to generate a forecast for the next 21 days.
It also shows the forecast confidence intervals.

plot of chunk arimaforecastplot of chunk arimaforecastplot of chunk arimaforecast