Category Archives: FX

G10 FX Implied Volatilities: Cheap or Expensive ?

The following report provides a granular analysis of implied volatilities within G10 FX. I use primarily the same formatting than for my G10FX positioning report to estimate how extended the 1-month FX implied volatilities are over various time horizon.

The first set of charts shows the historical T-stat of the 1-day changes in 1-month implied volatilities over a rolling period of 61-days. This is my statistical metric to quantify how stretched the implied volatilities are, but clearly other time period could be used as shown further down on in that report. The purple line represents the median value since 1996 and the red lines represent the 95% confidence intervals. Therefore if the value is above or below those the deviation of the given implied volatility should be deemed as atypical relative to what would be expected under a normal distribution (I am not saying that implied volatilities have a normal behaviour to be clear….) and therefore overbought/oversold.

plot of chunk stretch line chart

The below charts shows the current implied volatilities relative to their historical distributions since 1996. Once again the red lines delimit the 95% confidence intervals and the purple line the median value. The blue line indicates the most current level of 1-month implied volatility.

plot of chunk stretch distribution

Finally the below shows a stretch map of the T-Stats to help visualise how much implied volatilities have departed from their equilibrium levels over time horizons ranging from 1-month to 6-month. The bigger the square the most significant the observed upside (Green) or downside (Red) of the implied volatility over the given period.

plot of chunk stretch map

GBPUSD Implied Volatility Level and Steepness of Volatility Curve

I recently have read a paper titled The yen/dollar exchange rate in 1998: views from options markets written by the Bank of England back in November 1998. This got me to think of how I could best represent in one chart the relationship between the slope of the implied volatility term structure of and the nominal level o the 1-month volatility. In the following example I have applied this to the GBPUSD implied volatility as I thought this would be interesting to look at in the light of the forthcomint BREXIT negocaitions….

Anyhow to do this, I regress the 1, 3, 6 and 12-month GBPUSD implied volatilies against their time values for the period 1996 to Mayr 2017 (i.e 5513 volatility curves). I derived the volatility curve slopes t_stats for each day and then classified the 1-month volatilities into three groups as a function of the significance level of the slope t-stats. The chart below shows the 1-month implied volatiliy over the full period. When the volatility curve slope was positvely significant at 95% critical threshold the data is shown in green, When there was a signicantly negative slope at the 95% critical threshold the data is shown in red and pale blue for the remainder. I think this is a neat way highlight that time of high volatility are associated with a volatility curve that slope downwardly and vice-versa.

plot of chunk stretch line chart

Below are the

Trade Weighted Currency Indices Stretch Map

Trade Weighted Currency Indices Report

Wed Apr 26 20:34:07 2017

The following report aims to provide a gauge to the current strenght of major currencies. For doing so I use the Bank of England Trade weighted Exchange rate indices and a standardised statistical measures of price deviation to provide an estimate of how stretched major currencies are on a trade weighted perspective.

plot of chunk linechart

I first calculate the T-stat of the mean price deviations over a rolling period of 61 days. The charts below show the results for each currency over the last 500 days. The purple line represents the median value since 1990-01-03 and the red lines represent the 95% confidence intervals. Therefore if the value is above or below those the deviation of the given currency would be deemed as atypical relative to what #would be expected under a normal distribution and therefore overbought/oversold.

plot of chunk rolling chart

The following Map chart shows how stretched the currencies are over time horizons ranging from 1-month to 1-year. The bigger the square the most significant the upside (green) or downside (red) of currencies over the given period.

plot of chunk stretch map
The charts below show how the daily changes in the Trade weighted indices have correlated since January 1990 and since the begining of 2015.

plot of chunk correlation
Finally, the following provide an ARIMA forecast for each of the trade weighted indices. My script selects the best ARIMA fit over the previous 250-day to generate a forecast for the next 21 days.
It also shows the forecast confidence intervals.

plot of chunk arimaforecastplot of chunk arimaforecastplot of chunk arimaforecast

Trade Weighted Currency Indices Stretch Map

Trade Weighted Currency Indices Report

Wed Apr 05 19:45:03 2017

The following report aims to provide a gauge to the current strenght of major currencies. For doing so I use the Bank of England Trade weighted Exchange rate indices and a standardised statistical measures of price deviation to provide an estimate of how stretched major currencies are on a trade weighted perspective.

plot of chunk linechart

I first calculate the T-stat of the mean price deviations over a rolling period of 61 days. The charts below show the results for each currency over the last 500 days. The purple line represents the median value since 1990-01-03 and the red lines represent the 95% confidence intervals. Therefore if the value is above or below those the deviation of the given currency would be deemed as atypical relative to what #would be expected under a normal distribution and therefore overbought/oversold.

plot of chunk rolling chart

The following Map chart shows how stretched the currencies are over time horizons ranging from 1-month to 1-year. The bigger the square the most significant the upside (green) or downside (red) of currencies over the given period.

plot of chunk stretch map
The charts below show how the daily changes in the Trade weighted indices have correlated since January 1990 and since the begining of 2015.

plot of chunk correlation
Finally, the following provide an ARIMA forecast for each of the trade weighted indices. My script selects the best ARIMA fit over the previous 250-day to generate a forecast for the next 21 days.
It also shows the forecast confidence intervals.

plot of chunk arimaforecastplot of chunk arimaforecastplot of chunk arimaforecast

Weekly Changes in G10 FX Trade Weighted Indices

I always liked boxplots. I think they provide a great and very visual way to position current data relative to their history whilst highlighting outliers. This is particularly useful as it helps to put recent moves in context of their past opportunities and possibly highly reversals and/or opportunities. To illustrate this I wrote a quick script in R to grab the BOE G10 Trade weighted indices from the website of the bank of England and posititon the most recent one week move relative to its history of weekly move going back to 1990.
The blue dots represent the most recent observations, the orange dots are the outliers over the period 1990 to date. The boxes emcompasses the observations that fall between the 25% and 75% quantiles. The Blue lines in the box are the median value over the sample and the “wiskers” represent an interval of close to 95%.

plot of chunk chartdata

Weekly Changes in G10 FX Trade Weighted Indices

I always liked boxplots. I think they provide a great and very visual way to position current data relative to their history whilst highlighting outliers. This is particularly useful as it helps to put recent moves in context of their past opportunities and possibly highly reversals and/or opportunities. To illustrate this I wrote a quick script in R to grab the BOE G10 Trade weighted indices from the website of the bank of England and posititon the most recent one week move relative to its history of weekly move going back to 1990.
The blue dots represent the most recent observations, the orange dots are the outliers over the period 1990 to date. The boxes emcompasses the observations that fall between the 25% and 75% quantiles. The Blue lines in the box are the median value over the sample and the “wiskers” represent an interval of close to 95%.

plot of chunk chartdata

Trade Weighted Currency Indices Stretch Map

Trade Weighted Currency Indices Report

Thu Mar 23 05:53:54 2017

The following report aims to provide a gauge to the current strenght of major currencies. For doing so I use the Bank of England Trade weighted Exchange rate indices and a standardised statistical measures of price deviation to provide an estimate of how stretched major currencies are on a trade weighted perspective.

plot of chunk linechart

I first calculate the T-stat of the mean price deviations over a rolling period of 61 days. The charts below show the results for each currency over the last 500 days. The purple line represents the median value since 1990-01-03 and the red lines represent the 95% confidence intervals. Therefore if the value is above or below those the deviation of the given currency would be deemed as atypical relative to what #would be expected under a normal distribution and therefore overbought/oversold.

plot of chunk rolling chart

The following Map chart shows how stretched the currencies are over time horizons ranging from 1-month to 1-year. The bigger the square the most significant the upside (green) or downside (red) of currencies over the given period.

plot of chunk stretch map
The charts below show how the daily changes in the Trade weighted indices have correlated since January 1990 and since the begining of 2015.

plot of chunk correlation
Finally, the following provide an ARIMA forecast for each of the trade weighted indices. My script selects the best ARIMA fit over the previous 250-day to generate a forecast for the next 21 days.
It also shows the forecast confidence intervals.

plot of chunk arimaforecastplot of chunk arimaforecastplot of chunk arimaforecast

US Stock Market Risk Report Update…

The following report provides an update on some of the metrics I use to classify market risk. The word classify is more appropriate as I think that in essence you cannot forecast risk but rather attempt to adjust to it into a timely fashion. Clearly risk would not be a risk if you could forecast it accurately. However as there is generally some degree of persistence in risk regimes, using a dynamic classification may be a useful approach for portfolio rebalancing and hedging. In this report I use the VIX as a measure of global financial market risk. The same methodology can be successfully applied to other inputs. Feel free to contact me at Pierre@argonautae.com for more information on the subject.

In my approach I recognise that the nominal level of implied volatility is a crude metric of risk therefore I also use two other measures. The VIX Volga, a measure of uncertainty of risk and the ShockIndex a measure of market dislocation. VIX Volga is simply the volatility of the VIX over a given period. This measure highlights how uncertain and unstable the level of risk has become. Though positively correlated to the level of the VIX the VIX Volga is not necessarily dependent on it. You can have a high level of volga whilst the VIX is trading at rather innocuous levels. This is not a trivial observation as the leverage undertaken by market participants tends to be an inverse function of market volatility which implies a greater vulnerability when volatility becomes uncertain at low levels and therefore cannot be accurately budgeted fo r. The ShockIndex is the ratio between the Volga and VIX at the beginning the historical window chosen to evaluate the Volga. It quantifies sharp changes and acceleration in risk levels. Historically it has proven to be a good classifying measure for market event risks.

The below charts shows those three measures both relative to a time axis and their historical distribution. The red lines are the 95% confidence intervals, the purple line the median. The blue line highlight the current level. The VIX Volga and ShockIndex in this report are evaluated over a period of 14 days. The medians and 95% confidence intervals are calculated over the full history going back to 1990 though the charts shows only the recent years.

plot of chunk riskchart

At close of business the 2017-03-15 the VIX was trading at 11.6 at the 6 percentile. The 14-day VIX Volga was estimated at 8.3 its 15.1 percentile and the shockindex at 0.8 or its 52 percentile.

The above charts are useful, however their visualisation is quite limiting. On the one hand we need quite a few charts to present the data on the other hand it is difficult to show the full VIX history going back to 1990 as this would make the charts unreadable. Therefore clustering and aggregating the whole data into a single chart should be useful to the end user. To answer this I use a mapping technique developed by Kohonen in the 1980′. It uses an unsupervised neural network to re-arrange data around meaningful clusters. Though computationally complex is a practical way to summarise multidimensional data into a low (usually 2) dimensional system.

The below chart shows how the VIX price history was split into 4 distinct clusters. Those clusters where computed not only as a function of the VIX level but also as a function of the other variables, namely VIX volga and Shockindex.

Since 1990 the VIX traded 52 % of the time in Cluster 1, 37 % in Cluster 2, 10 % in Cluster 3 and 2 % in Cluster 4. Overall the layering provided seems quite intuitive as the increase in risk and time spent in each cluster points toward what would generally be expected from market risk regimes ranging from low to high risk.

plot of chunk cluster_chart

In the chart below we zoom on the various regimes within which the VIX has been trading for the current year. so far it traded 55 % of the time in Cluster 1, 25 % in Cluster 2, 20 % in Cluster 3 and 0 % in Cluster 4.

plot of chunk ytdriskchart

Finally the below chart shows a Self Organising Map of the above mentioned risk metrics. The data has been grouped and colored as a function of four clusters of increasing market risk regimes. Obviously as shown on the map, the minimum level of volatility pertains to cluster 1 and the highest to cluster4. The current regime and its progression from 21 days ago is also highlighted on the map.

plot of chunk SOM_chart

Always happy to discuss any of the above, feel free to reach me at: Pierre@argonautae.co.uk

Trade Weighted Currency Indices Stretch Map

Trade Weighted Currency Indices Report

Thu Mar 16 20:55:30 2017

The following report aims to provide a gauge to the current strenght of major currencies. For doing so I use the Bank of England Trade weighted Exchange rate indices and a standardised statistical measures of price deviation to provide an estimate of how stretched major currencies are on a trade weighted perspective.

plot of chunk linechart

I first calculate the T-stat of the mean price deviations over a rolling period of 61 days. The charts below show the results for each currency over the last 500 days. The purple line represents the median value since 1990-01-03 and the red lines represent the 95% confidence intervals. Therefore if the value is above or below those the deviation of the given currency would be deemed as atypical relative to what #would be expected under a normal distribution and therefore overbought/oversold.

plot of chunk rolling chart

The following Map chart shows how stretched the currencies are over time horizons ranging from 1-month to 1-year. The bigger the square the most significant the upside (green) or downside (red) of currencies over the given period.

plot of chunk stretch map
The charts below show how the daily changes in the Trade weighted indices have correlated since January 1990 and since the begining of 2015.

plot of chunk correlation
Finally, the following provide an ARIMA forecast for each of the trade weighted indices. My script selects the best ARIMA fit over the previous 250-day to generate a forecast for the next 21 days.
It also shows the forecast confidence intervals.

plot of chunk arimaforecastplot of chunk arimaforecastplot of chunk arimaforecast

Weekly Changes in G10 FX Trade Weighted Indices

I always liked boxplots. I think they provide a great and very visual way to position current data relative to their history whilst highlighting outliers. This is particularly useful as it helps to put recent moves in context of their past opportunities and possibly highly reversals and/or opportunities. To illustrate this I wrote a quick script in R to grab the BOE G10 Trade weighted indices from the website of the bank of England and posititon the most recent one week move relative to its history of weekly move going back to 1990.
The blue dots represent the most recent observations, the orange dots are the outliers over the period 1990 to date. The boxes emcompasses the observations that fall between the 25% and 75% quantiles. The Blue lines in the box are the median value over the sample and the “wiskers” represent an interval of close to 95%.

plot of chunk chartdata